Friday, June 9, 2023

El Niño and La Niña anomaly couple is becoming stronger and longer in the 21st century, more droughts will appear around the globe

El Niño (Spanish: [el ˈniɲo]; lit. 'The Boy') is the warm phase of the El Niño–Southern Oscillation (ENSO) and is associated with a band of warm ocean water that develops in the central and east-central equatorial Pacific, including the area off the Pacific coast of South America. The ENSO is the cycle of warm and cold sea surface temperature (SST) of the tropical central and eastern Pacific Ocean.
El Niño is accompanied by high air pressure in the western Pacific and low air pressure in the eastern Pacific. El Niño phases are known to last close to four years; however, records demonstrate that the cycles have lasted between two and seven years. During the development of El Niño, rainfall develops between September–November.

The cool phase of ENSO is (Spanish: La Niña, lit. 'The Girl'), with SSTs in the eastern Pacific below average, and air pressure high in the eastern Pacific and low in the western Pacific. La Niña impacts the global climate and disrupts normal weather patterns, which can lead to intense storms in some places and droughts in others. The ENSO cycle, including both El Niño and La Niña, causes global changes in temperature and rainfall.

There is no consensus whether climate change will have any influence on the occurrence, strength or duration of El Niño events, as research supports El Niño events becoming stronger, longer, shorter and weaker. However, recent scholarship has found that climate change is increasing the frequency of extreme El Niño events.

Typically, this anomaly happens at irregular intervals of two to seven years, and lasts nine months to two years. The average period length is five years. When this warming occurs for seven to nine months, it is classified as El Niño "conditions"; when its duration is longer, it is classified as an El Niño "episode".

During strong El Niño episodes, a secondary peak in sea surface temperature across the far eastern equatorial Pacific Ocean sometimes follows the initial peak.
El Niño affects the global climate and disrupts normal weather patterns, which as a result can lead to intense storms in some places and droughts in others.

Socio-ecological Effects on Humanity and Nature

The effects of El Niño are impacting humans everywhere in the world. Impacts can now be observed on all continents and ocean regions, with low-latitude, less developed areas facing the greatest risk. Continual warming has potentially "severe, pervasive and irreversible impacts" on people and ecosystems.

Economical effects - When El Niño conditions last for many months, extensive ocean warming and the reduction in easterly trade winds limits upwelling of cold nutrient-rich deep water, and its economic effect on local fishing for an international market can be serious.

More generally, El Niño can affect commodity prices and the macroeconomy of different countries. It can constrain the supply of rain-driven agricultural commodities; reduce agricultural output, construction, and services activities; create food-price and generalised inflation; and may trigger social unrest in commodity-dependent poor countries that primarily rely on imported food.

Health and social impacts - Extreme weather conditions related to the El Niño cycle correlate with changes in the incidence of epidemic diseases. For example, the El Niño cycle is associated with increased risks of some of the diseases transmitted by mosquitoes, such as malaria, dengue fever, and Rift Valley fever. Cycles of malaria in India, Venezuela, Brazil, and Colombia have now been linked to El Niño.

Extreme weather leads to injury and loss of life, young children are the most vulnerable to food shortages. Both children and older people are vulnerable to extreme heat, they assessed deaths from heat exposure in elderly people, increases in diarrhea and childhood malnutrition.

ENSO may be linked to civil conflicts. Scientists at The Earth Institute of Columbia University, having analyzed data from 1950 to 2004, suggest ENSO may have had a role in 21% of all civil conflicts since 1950, with the risk of annual civil conflict doubling from 3% to 6% in countries affected by ENSO during El Niño years relative to La Niña years.

Ecological consequences - During the 1982–83, 1997–98, and 2015–16 ENSO events, large extensions of tropical forests experienced a prolonged dry period that resulted in widespread fires, and drastic changes in forest structure and tree species composition in Amazonian and Bornean forests, but their impacts do not restrict only vegetation, since declines in insect populations were observed after extreme drought and terrible fires during El Niño 2015–16.

Most critically, global mass bleaching events were recorded in 1997-98 and 2015–16, when around 75-99% losses of live coral were registered across the world. Considerable attention was also given to the collapse of Peruvian and Chilean anchovy populations that led to a severe fishery crisis following the ENSO events in 1972–73, 1982–83, 1997–98, and, more recently, in 2015–16.

Climate change is a major influence for a more permanent ENSO state

In common usage, climate change describes global warming—the ongoing increase in global average temperature—and its effects on Earth's climate system. Climate change in a broader sense also includes previous long-term changes to Earth's climate. The current rise in global average temperature is more rapid than previous changes and is primarily caused by humans burning fossil fuels. Fossil fuel use, deforestation, and some agricultural and industrial practices increase greenhouse gases, notably carbon dioxide and methane. Greenhouse gases absorb some of the heat that the Earth radiates after it warms from sunlight. Larger amounts of these gases trap more heat in Earth's lower atmosphere, causing global warming.

Due to climate change, deserts are expanding, while heat waves and wildfires are becoming more common. Increased warming in the Arctic has contributed to melting permafrost, glacial retreat and sea ice loss. Higher temperatures are also causing more intense storms, droughts, and other weather extremes. Rapid environmental change in mountains, coral reefs, and the Arctic is forcing many species to relocate or become extinct. Even if efforts to minimize future warming are successful, some effects will continue for centuries. These include ocean heating, ocean acidification and sea level rise.

Climate change threatens people with increased flooding, extreme heat, increased food and water scarcity, more disease, and economic loss. Human migration and conflict can also be a result. The World Health Organization (WHO) calls climate change the greatest threat to global health in the 21st century. Societies and ecosystems will experience more severe risks without action to limit warming. Adapting to climate change through efforts like flood control measures or drought-resistant crops partially reduces climate change risks, although some limits to adaptation have already been reached. Poorer countries are responsible for a small share of global emissions, yet have the least ability to adapt and are most vulnerable to climate change.

Many climate change impacts are already felt at the current 1.2 °C (2.2 °F) level of warming. Additional warming will increase these impacts and can trigger tipping points, such as the melting of the Greenland ice sheet. Under the 2015 Paris Agreement, nations collectively agreed to keep warming "well under 2 °C". However, with pledges made under the Agreement, global warming would still reach about 2.7 °C (4.9 °F) by the end of the century. Limiting warming to 1.5 °C will require halving emissions by 2030 and achieving net-zero emissions by 2050.

More frequent El Niño and La Niña droughts  

A drought is a period of drier-than-normal conditions. A drought can last for days, months or years. Drought often has large impacts on the ecosystems and agriculture of affected regions, and causes harm to the local economy. Annual dry seasons in the tropics significantly increase the chances of a drought developing and subsequent wildfires. Periods of heat can significantly worsen drought conditions by hastening evaporation of water vapour.

Drought is a recurring feature of the climate in most parts of the world, becoming more extreme and less predictable due to climate change, which dendrochronological studies date back to 1900. There are three kinds of drought effects, environmental, economic and social. Environmental effects include the drying of wetlands, more and larger wildfires, loss of biodiversity. Economic consequences include disruption of water supplies for municipal economies; lower agricultural, forest, game, and fishing outputs; higher food-production costs; and problems with water supply for the energy sector. Social and health costs include the negative effect on the health of people directly exposed to this phenomenon (excessive heat waves), high food costs, stress caused by failed harvests, water scarcity, etc. Prolonged droughts have caused mass migrations and humanitarian crisis.

The El Niño–Southern Oscillation (ENSO) phenomenon can sometimes play a significant role in drought. ENSO comprises two patterns of temperature anomalies in the central Pacific Ocean, known as La Niña and El Niño. La Niña events are generally associated with drier and hotter conditions and further exacerbation of drought in California and the Southwestern United States, and to some extent the U.S. Southeast. Meteorological scientists have observed that La Niñas have become more frequent over time.

Conversely, during El Niño events, drier and hotter weather occurs in parts of the Amazon River Basin, Colombia, and Central America. Winters during the El Niño are warmer and drier than average conditions in the Northwest, northern Midwest, and northern Mideast United States, so those regions experience reduced snowfalls.

Direct effects of El Niño resulting in drier conditions occur in parts of Southeast Asia and Northern Australia, increasing bush fires, worsening haze, and decreasing air quality dramatically.

Drought is a complex phenomenon − relating to the absence of water − which is difficult to monitor and define. By the early 1980's, over 150 definitions of "drought" had already been published. The range of definitions reflects differences in regions, needs, and disciplinary approaches.

Wednesday, May 3, 2023

“Noble Orient” Gum arabic in food as a safe thickener, emulsifier and stabilizer. Can it be save to desert locust upsurges swarm?

Gum arabic is a natural gum originally consisting of the hardened sap of two species of the Acacia tree, Senegalia senegal and Vachellia seyal. Senegalia senegal (also known as Acacia senegal) is a small thorny deciduous tree from the genus Senegalia, which is known by several common names, including gum acacia, gum arabic tree, Sudan gum and Sudan gum arabic. In parts of India, it is known as Kher or Khor. It is native to semi-desert regions of Sub-Saharan Africa, as well as Oman, Pakistan, and west coastal India. It grows to a height of 5–12 metres (16-40'), with a trunk up to 30 cm (1') in diameter. Sudan is the source of the world's highest quality gum arabic, known locally as hashab gum in contrast to the related, but inferior, gum arabic from Red acacia or talah gum.

The term "gum arabic" does not legally indicate a particular botanical source, however. The gum is harvested commercially from wild trees, mostly in Sudan (80%) and throughout the Sahel, from Senegal to Somalia. The gum is drained from cuts in the bark, and an individual tree will yield 200 to 300 grams (7 to 10 oz). The name "gum Arabic" (al-samgh al-'arabi) was used in the Middle East at least as early as the 9th century. Gum arabic first found its way to Europe via Arabic ports, so retained its name.

Gum arabic is a complex mixture of glycoproteins and polysaccharides, predominantly polymers of arabinose and galactose. It is soluble in water, edible, and used primarily in the food industry and soft-drink industry as a stabilizer, with E number E414 (I414 in the US). Gum arabic is a key ingredient in traditional lithography and is used in printing, paints, glues, cosmetics, and various industrial applications, including viscosity control in inks and in textile industries, though less expensive materials compete with it for many of these roles.

Health benefits

Gum arabic is a rich source of dietary fibers and in addition to its widespread use in food and pharmaceutical industries as a safe thickener, emulsifier, and stabilizer, it also possesses a broad range of health benefits that have been evidently proved through several in vitro and in vivo studies. Gum arabic is not degraded in the stomach but fermented in the large intestine into a number of short chain fatty acids. It is regarded as a prebiotic that enhances the growth and proliferation of the beneficial intestinal microbiota and therefore its intake is associated with many useful health effects. These health benefits include:

  • Improved absorption of calcium from the gastrointestinal tract
  • Anti-diabetic
  • Anti-obesity (gum arabic lowers the body mass index and body fat percentage)
  • Lipid lowering potential (gum arabic decreases total cholesterol, LDL, and triglyceride)
  • Antioxidant activities
  • Kidney and liver support
  • Immune function via modulating the release of some inflammatory mediators
  • Prebiotic improving the intestinal barrier function, preventing colon cancer, and alleviating symptoms of irritable bowel diseases
  • In rats, a protective effect on the intestine against the adverse actions of the NSAID drug meloxicam

Various Uses

Gum arabic's mixture of polysaccharides and glycoproteins gives it the properties of a glue and binder that is edible by humans. Other substances have replaced it where toxicity is not an issue, as the proportions of the various chemicals in gum arabic vary widely and make it unpredictable. Still, it remains an important ingredient in soft drink syrup and "hard" gummy candies such as gumdrops, marshmallows, and M&M's chocolate candies. For artists, it is the traditional binder in watercolor paint and in photography for gum printing, and it is used as a binder in pyrotechnic compositions. Pharmaceutical drugs and cosmetics also use the gum as a binder, emulsifier, and suspending agent or viscosity-increasing agent.

It is an important ingredient in shoe polish, and can be used in making homemade incense cones. It is also used as a lickable adhesive, for example on postage stamps, envelopes, and cigarette papers. Lithographic printers employ it to keep the non-image areas of the plate receptive to water. This treatment also helps to stop oxidation of aluminium printing plates in the interval between processing of the plate and its use on a printing press.

Production

While gum arabic has been harvested in Arabia, Sudan, and West Asia since antiquity, sub-Saharan acacia gum has a long history as a prized export. The gum exported came from the band of acacia trees that once covered much of the Sahel region, the southern littoral of the Sahara Desert that runs from the Atlantic Ocean to the Red Sea. Today, the main populations of gum-producing Acacia species are found in Mauritania, Senegal, Mali, Burkina Faso, Niger, Nigeria, Chad, Cameroon, Sudan, Eritrea, Somalia, Ethiopia, Kenya, and Tanzania. Acacia is tapped for gum by stripping bits off the bark, from which gum then exudes. Traditionally harvested by seminomadic desert pastoralists in the course of their transhumance cycle, acacia gum remains a main export of several African nations, including Mauritania, Niger, Chad, and Sudan. In Sudan hundreds of thousands of Sudanese people are dependent on gum arabic for their livelihoods. After market reforms total world gum arabic Sudan’s exports are today (2019) estimated at 160,000 tonnes, the production of gum arabic is heavily controlled by the Sudanese government.


Desert locust plagues and potential upsurges swarm invasions

The desert locust (Schistocerca gregaria) is a species of locust, a periodically swarming, short-horned grasshopper in the family Acrididae. They are found primarily in the deserts and dry areas of northern and eastern Africa, Arabia, and southwest Asia.

During plague years, desert locusts can cause widespread damage to crops, as they are highly mobile and feed on large quantities of any kind of green vegetation, including crops, pasture, and fodder. A typical swarm can be made up of 150 million locusts per square kilometre (390,000,000 per square mile) and fly in the direction of the prevailing wind up to 150 kilometres (93 mi) in one day. Even a very small, 1-square-kilometre (0.39 sq mi) locust swarm can eat the same amount of food in a day as about 35,000 people. They have two to five generations per year. The desert locust risk increases with a one-to-two-year continuum of favourable weather (greater frequency of rains) and habitats that support population increases leading to upsurges and plagues. The locust can live between 3 and 6 months, and a 10- to 16-fold increase in locust numbers occurs from one generation to the next.

Desert locusts consume an estimated equivalent of their body weight (2 g (0.07 oz)) each day in green vegetation. They are polyphagous and feed on leaves, shoots, flowers, fruit, seeds, stems, and bark. Nearly all crops and noncrop plants are eaten, including pearl millet, maize, sorghum, barley, rice, pasture grasses, sugarcane, cotton, fruit trees, date palms, banana plants, vegetables, and weeds.

The desert locust is a difficult pest to control, and control measures are further compounded by the large and often remote areas (16–30 million square kilometres (6.2–11.6 million square miles)) where locusts can be found. Undeveloped basic infrastructure in some affected countries, limited resources for locust monitoring and control, and political turmoil within and between affected countries further reduce the capacity of a country to undertake the necessary monitoring and control activities.

In May 2018, Cyclone Mekunu brought unprecedented rainfall to the Empty Quarter of the Arabian Peninsula that was followed by Cyclone Luban that brought heavy rains again to the same area in October. This allowed conditions to be favourable for three generations of breeding, which caused an estimated 8,000-fold increase in Desert Locust numbers that went unchecked because the area was so remote it could not be accessed by national locust teams.

In early 2019, waves of swarms migrated from this remote and inaccessible area north to the interior of Saudi Arabia and southern Iran, and southwest to the interior of Yemen. Both areas received good rains, including heavy flooding in southwest Iran (the worst in 50 years), that allowed another two generations of breeding to take place. While control operations were mounted against the northern movement and subsequent breeding, very little could be done in Yemen and Sudan due to the ongoing conflict. As a result, new swarms formed that crossed the southern Red Sea and the Gulf of Aden and invaded the Horn of Africa, specifically northeast Ethiopia and northern Somalia in June 2019. Again, good rains allowed further breeding during the summer, followed by another generation of widespread breeding during the autumn in eastern Ethiopia and central Somalia, which was exacerbated by the unusually late occurring Cyclone Pawan in northeast Somalia in early December. The swarms that subsequently formed invaded Kenya in late December 2019 and spread throughout the country where they bred in between the rainy seasons because of unusual rainfall. Kenya had only witnessed swarm invasions twice in the past 75 years (1955 and 2007). Some swarms also invaded Uganda, South Sudan, Tanzania and one swarmlet reached northeast D.R. Congo, the first time since 1945. As of 1 April 2022 there are no locust crises anywhere in the world but swarms are expected in October in the Sahel, Yemen and on the India–Pakistan border

Monday, April 3, 2023

AGI in FLOSS can reverse engineering to be unkind if in the wrong hands, different proactive cyber defence approach is needed

Free and open-source software (FOSS) is a term used to refer to groups of software consisting of both free software and open-source software where anyone is freely licensed to use, copy, study, and change the software in any way, and the source code is openly shared so that people are encouraged to voluntarily improve the design of the software. This is in contrast to proprietary software, where the software is under restrictive copyright licensing and the source code is usually hidden from the users.

FOSS maintains the software user's civil liberty rights. Other benefits of using FOSS can include decreased software costs, increased security and stability (especially in regard to malware), protecting privacy, education, and giving users more control over their own hardware. Free and open-source operating systems such as Linux and descendants of BSD are widely utilized today, powering millions of serversdesktops, smartphones (e.g., Android), and other devices. Free-software licenses and open-source licenses are used by many software packages. The free software movement and the open-source software movement are online social movements behind widespread production and adoption of FOSS, with the former preferring to use the terms FLOSS or free/libre.

Security and user-support

According to Linus's law the more people who can see and test a set of code, the more likely any flaws will be caught and fixed quickly. However, this does not guarantee a high level of participation. Having a grouping of full-time professionals behind a commercial product can in some cases be superior to FOSS.

Furthermore, publicized source code might make it easier for hackers to find vulnerabilities in it and write exploits. This however assumes that such malicious hackers are more effective than white hat hackers which responsibly disclose or help fix the vulnerabilities, that no code leaks or exfiltrations occur and that reverse engineering of proprietary code is a hindrance of significance for malicious hackers.

Hardware and software compatibility

Sometimes, FOSS is not compatible with proprietary hardware or specific software. This is often due to manufacturers obstructing FOSS such as by not disclosing the interfaces or other specifications needed for members of the FOSS movement to write drivers for their hardware - for instance as they wish customers to run only their own proprietary software or as they might benefit from partnerships.

Bugs and missing features

While FOSS can be superior to proprietary equivalents in terms of software features and stability, in many cases it has more unfixed bugs and missing features when compared to similar commercial software. This varies per case, and usually depends on the level of interest in a particular project. However, unlike close-sourced software, improvements can be made by anyone who has the motivation, time and skill to do so

Future AI might possess Superintelligence agent

Artificial intelligence (AI) is intelligence demonstrated by machines, as opposed to intelligence of humans and other animals. Example tasks in which this is done include speech recognition, computer vision, translation between (natural) languages, as well as other mappings of inputs.

AI applications include advanced web search engines (e.g., Google Search), recommendation systems (used by YouTubeAmazon, and Netflix), understanding human speech (such as Siri and Alexa), self-driving cars (e.g., Waymo), generative or creative tools (ChatGPT and AI art), automated decision-making, and competing at the highest level in strategic game systems (such as chess and Go)

Superintelligence

A superintelligence, hyperintelligence, or superhuman intelligence, is a hypothetical agent that would possess intelligence far surpassing that of the brightest and most gifted human mind. Superintelligence may also refer to the form or degree of intelligence possessed by such an agent.

If research into artificial general intelligence produced sufficiently intelligent software, it might be able to reprogram and improve itself. The improved software would be even better at improving itself, leading to recursive self-improvement. Its intelligence would increase exponentially in an intelligence explosion and could dramatically surpass humans. Science fiction writer Vernor Vinge named this scenario the "singularity". Because it is difficult or impossible to know the limits of intelligence or the capabilities of superintelligent machines, the technological singularity is an occurrence beyond which events are unpredictable or even unfathomable.

Bad actors and weaponized AI

AI provides a number of tools that are particularly useful for authoritarian governments: smart spywareface recognition and voice recognition allow widespread surveillance; such surveillance allows machine learning to classify potential enemies of the state and can prevent them from hiding; recommendation systems can precisely target propaganda and misinformation for maximum effect; deepfakes aid in producing misinformation; advanced AI can make centralized decision making more competitive with liberal and decentralized systems such as markets.

Terrorists, criminals and rogue states may use other forms of weaponized AI such as advanced digital warfare and lethal autonomous weapons. By 2015, over fifty countries were reported to be researching battlefield robots.

Existential risk

Superintelligent AI may be able to improve itself to the point that humans could not control it. This could, as physicist Stephen Hawking puts it, "spell the end of the human race". Philosopher Nick Bostrom argues that sufficiently intelligent AI, if it chooses actions based on achieving some goal, will exhibit convergent behavior such as acquiring resources or protecting itself from being shut down. If this AI's goals do not fully reflect humanity's, it might need to harm humanity to acquire more resources or prevent itself from being shut down, ultimately to better achieve its goal. He concludes that AI poses a risk to mankind, however humble or "friendly" its stated goals might be. Political scientist Charles T. Rubin argues that "any sufficiently advanced benevolence may be indistinguishable from malevolence." Humans should not assume machines or robots would treat us favorably because there is no a priori reason to believe that they would share our system of morality

 

Reverse engineering in source code can change future war

Reverse engineering (also known as backwards engineering or back engineering) is a process or method through which one attempts to understand through deductive reasoning how a previously made device, process, system, or piece of software accomplishes a task with very little (if any) insight into exactly how it does so. It is essentially the process of opening up or dissecting a system to see how it works, in order to duplicate or enhance it. Depending on the system under consideration and the technologies employed, the knowledge gained during reverse engineering can help with repurposing obsolete objects, doing security analysis, or learning how something works.

Although the process is specific to the object on which it is being performed, all reverse engineering processes consist of three basic steps: Information extraction, Modeling, and Review. Information extraction refers to the practice of gathering all relevant information for performing the operation. Modeling refers to the practice of combining the gathered information into an abstract model, which can be used as a guide for designing the new object or system. Review refers to the testing of the model to ensure the validity of the chosen abstract.

Military applications

Reverse engineering is often used by people to copy other nations' technologies, devices, or information that have been obtained by regular troops in the fields or by intelligence operations. It was often used during the Second World War and the Cold War. Here are well-known examples from the Second World War and later:

·         Panzerschreck: The Germans captured an American bazooka during the Second World War and reverse engineered it to create the larger Panzerschreck.

·         Tupolev Tu-4: In 1944, three American B-29 bombers on missions over Japan were forced to land in the Soviet Union. The Soviets, who did not have a similar strategic bomber, decided to copy the B-29. Within three years, they had developed the Tu-4, a nearly-perfect copy.

·         V-2 rocket: Technical documents for the V-2 and related technologies were captured by the Western Allies at the end of the war. The Americans focused their reverse engineering efforts via Operation Paperclip, which led to the development of the PGM-11 Redstone rocket. The Soviets used captured German engineers to reproduce technical documents and plans and worked from captured hardware to make their clone of the rocket, the R-1. Thus began the postwar Soviet rocket program, which led to the R-7 and the beginning of the space race.

·         China has reversed engineered many examples of Western and Russian hardware, from fighter aircraft to missiles and HMMWV cars, such as the MiG-15,17,19,21 (which became the J-2,5,6,7) and the Su-33 (which became the J-15). More recent analyses of China's military growth have pointed to the inherent limitations of habitual reverse engineering for advanced weapon systems.

·         During the Second World War, British scientists analyzed and defeated a series of increasingly-sophisticated radio navigation systems used by the Luftwaffe to perform guided bombing missions at night. The British countermeasures to the system were so effective that in some cases, German aircraft were led by signals to land at RAF bases since they believed that they had returned to German territory.

 

Proactive cyber defence is the highest priority

Proactive cyber defence means acting in anticipation to oppose an attack through cyber and cognitive domains. Proactive cyber defence can be understood as options between offensive and defensive measures. It includes interdicting, disrupting or deterring an attack or a threat's preparation to attack, either pre-emptively or in self-defence. Common methods include cyber deception, attribution, threat hunting and adversarial pursuit. The mission of the pre-emptive and proactive operations is to conduct aggressive interception and disruption activities against an adversary using: psychological operations, managed information dissemination, precision targeting, information warfare operations, computer network exploitation, and other active threat reduction measures. The proactive defense strategy is meant to improve information collection by stimulating reactions of the threat agents and to provide strike options as well as to enhance operational preparation of the real or virtual battlespace. Proactive cyber defence can be a measure for detecting and obtaining information before a cyber attack, or it can also be impending cyber operation and be determining the origin of an operation that involves launching a pre-emptive, preventive, or cyber counter-operation.

The offensive capacity includes the manipulation and/or disruption of networks and systems with the purpose of limiting or eliminating the adversary's operational capability. This capability can be required to guarantee one's freedom of action in the cyber domain. Cyber-attacks can be launched to repel an attack (active defence) or to support the operational action. Proactive cyber defence differs from active defence, meaning that it is pre-emptive (not waiting for an attack to occur). The distinction between active cyber defence and offensive cyber operations (OCO) is that the later requires legislative exceptions to undertake. Hence, offensive cyber capabilities may be developed in collaboration with industry and facilitated by private sector. But, these operations are often led by nation-states.
 
Google SEO sponsored by Red Dragon Electric Cigarette Products