Wednesday, May 3, 2023

“Noble Orient” Gum arabic in food as a safe thickener, emulsifier and stabilizer. Can it be save to desert locust upsurges swarm?

Gum arabic is a natural gum originally consisting of the hardened sap of two species of the Acacia tree, Senegalia senegal and Vachellia seyal. Senegalia senegal (also known as Acacia senegal) is a small thorny deciduous tree from the genus Senegalia, which is known by several common names, including gum acacia, gum arabic tree, Sudan gum and Sudan gum arabic. In parts of India, it is known as Kher or Khor. It is native to semi-desert regions of Sub-Saharan Africa, as well as Oman, Pakistan, and west coastal India. It grows to a height of 5–12 metres (16-40'), with a trunk up to 30 cm (1') in diameter. Sudan is the source of the world's highest quality gum arabic, known locally as hashab gum in contrast to the related, but inferior, gum arabic from Red acacia or talah gum.

The term "gum arabic" does not legally indicate a particular botanical source, however. The gum is harvested commercially from wild trees, mostly in Sudan (80%) and throughout the Sahel, from Senegal to Somalia. The gum is drained from cuts in the bark, and an individual tree will yield 200 to 300 grams (7 to 10 oz). The name "gum Arabic" (al-samgh al-'arabi) was used in the Middle East at least as early as the 9th century. Gum arabic first found its way to Europe via Arabic ports, so retained its name.

Gum arabic is a complex mixture of glycoproteins and polysaccharides, predominantly polymers of arabinose and galactose. It is soluble in water, edible, and used primarily in the food industry and soft-drink industry as a stabilizer, with E number E414 (I414 in the US). Gum arabic is a key ingredient in traditional lithography and is used in printing, paints, glues, cosmetics, and various industrial applications, including viscosity control in inks and in textile industries, though less expensive materials compete with it for many of these roles.

Health benefits

Gum arabic is a rich source of dietary fibers and in addition to its widespread use in food and pharmaceutical industries as a safe thickener, emulsifier, and stabilizer, it also possesses a broad range of health benefits that have been evidently proved through several in vitro and in vivo studies. Gum arabic is not degraded in the stomach but fermented in the large intestine into a number of short chain fatty acids. It is regarded as a prebiotic that enhances the growth and proliferation of the beneficial intestinal microbiota and therefore its intake is associated with many useful health effects. These health benefits include:

  • Improved absorption of calcium from the gastrointestinal tract
  • Anti-diabetic
  • Anti-obesity (gum arabic lowers the body mass index and body fat percentage)
  • Lipid lowering potential (gum arabic decreases total cholesterol, LDL, and triglyceride)
  • Antioxidant activities
  • Kidney and liver support
  • Immune function via modulating the release of some inflammatory mediators
  • Prebiotic improving the intestinal barrier function, preventing colon cancer, and alleviating symptoms of irritable bowel diseases
  • In rats, a protective effect on the intestine against the adverse actions of the NSAID drug meloxicam

Various Uses

Gum arabic's mixture of polysaccharides and glycoproteins gives it the properties of a glue and binder that is edible by humans. Other substances have replaced it where toxicity is not an issue, as the proportions of the various chemicals in gum arabic vary widely and make it unpredictable. Still, it remains an important ingredient in soft drink syrup and "hard" gummy candies such as gumdrops, marshmallows, and M&M's chocolate candies. For artists, it is the traditional binder in watercolor paint and in photography for gum printing, and it is used as a binder in pyrotechnic compositions. Pharmaceutical drugs and cosmetics also use the gum as a binder, emulsifier, and suspending agent or viscosity-increasing agent.

It is an important ingredient in shoe polish, and can be used in making homemade incense cones. It is also used as a lickable adhesive, for example on postage stamps, envelopes, and cigarette papers. Lithographic printers employ it to keep the non-image areas of the plate receptive to water. This treatment also helps to stop oxidation of aluminium printing plates in the interval between processing of the plate and its use on a printing press.

Production

While gum arabic has been harvested in Arabia, Sudan, and West Asia since antiquity, sub-Saharan acacia gum has a long history as a prized export. The gum exported came from the band of acacia trees that once covered much of the Sahel region, the southern littoral of the Sahara Desert that runs from the Atlantic Ocean to the Red Sea. Today, the main populations of gum-producing Acacia species are found in Mauritania, Senegal, Mali, Burkina Faso, Niger, Nigeria, Chad, Cameroon, Sudan, Eritrea, Somalia, Ethiopia, Kenya, and Tanzania. Acacia is tapped for gum by stripping bits off the bark, from which gum then exudes. Traditionally harvested by seminomadic desert pastoralists in the course of their transhumance cycle, acacia gum remains a main export of several African nations, including Mauritania, Niger, Chad, and Sudan. In Sudan hundreds of thousands of Sudanese people are dependent on gum arabic for their livelihoods. After market reforms total world gum arabic Sudan’s exports are today (2019) estimated at 160,000 tonnes, the production of gum arabic is heavily controlled by the Sudanese government.


Desert locust plagues and potential upsurges swarm invasions

The desert locust (Schistocerca gregaria) is a species of locust, a periodically swarming, short-horned grasshopper in the family Acrididae. They are found primarily in the deserts and dry areas of northern and eastern Africa, Arabia, and southwest Asia.

During plague years, desert locusts can cause widespread damage to crops, as they are highly mobile and feed on large quantities of any kind of green vegetation, including crops, pasture, and fodder. A typical swarm can be made up of 150 million locusts per square kilometre (390,000,000 per square mile) and fly in the direction of the prevailing wind up to 150 kilometres (93 mi) in one day. Even a very small, 1-square-kilometre (0.39 sq mi) locust swarm can eat the same amount of food in a day as about 35,000 people. They have two to five generations per year. The desert locust risk increases with a one-to-two-year continuum of favourable weather (greater frequency of rains) and habitats that support population increases leading to upsurges and plagues. The locust can live between 3 and 6 months, and a 10- to 16-fold increase in locust numbers occurs from one generation to the next.

Desert locusts consume an estimated equivalent of their body weight (2 g (0.07 oz)) each day in green vegetation. They are polyphagous and feed on leaves, shoots, flowers, fruit, seeds, stems, and bark. Nearly all crops and noncrop plants are eaten, including pearl millet, maize, sorghum, barley, rice, pasture grasses, sugarcane, cotton, fruit trees, date palms, banana plants, vegetables, and weeds.

The desert locust is a difficult pest to control, and control measures are further compounded by the large and often remote areas (16–30 million square kilometres (6.2–11.6 million square miles)) where locusts can be found. Undeveloped basic infrastructure in some affected countries, limited resources for locust monitoring and control, and political turmoil within and between affected countries further reduce the capacity of a country to undertake the necessary monitoring and control activities.

In May 2018, Cyclone Mekunu brought unprecedented rainfall to the Empty Quarter of the Arabian Peninsula that was followed by Cyclone Luban that brought heavy rains again to the same area in October. This allowed conditions to be favourable for three generations of breeding, which caused an estimated 8,000-fold increase in Desert Locust numbers that went unchecked because the area was so remote it could not be accessed by national locust teams.

In early 2019, waves of swarms migrated from this remote and inaccessible area north to the interior of Saudi Arabia and southern Iran, and southwest to the interior of Yemen. Both areas received good rains, including heavy flooding in southwest Iran (the worst in 50 years), that allowed another two generations of breeding to take place. While control operations were mounted against the northern movement and subsequent breeding, very little could be done in Yemen and Sudan due to the ongoing conflict. As a result, new swarms formed that crossed the southern Red Sea and the Gulf of Aden and invaded the Horn of Africa, specifically northeast Ethiopia and northern Somalia in June 2019. Again, good rains allowed further breeding during the summer, followed by another generation of widespread breeding during the autumn in eastern Ethiopia and central Somalia, which was exacerbated by the unusually late occurring Cyclone Pawan in northeast Somalia in early December. The swarms that subsequently formed invaded Kenya in late December 2019 and spread throughout the country where they bred in between the rainy seasons because of unusual rainfall. Kenya had only witnessed swarm invasions twice in the past 75 years (1955 and 2007). Some swarms also invaded Uganda, South Sudan, Tanzania and one swarmlet reached northeast D.R. Congo, the first time since 1945. As of 1 April 2022 there are no locust crises anywhere in the world but swarms are expected in October in the Sahel, Yemen and on the India–Pakistan border
 
Google SEO sponsored by Red Dragon Electric Cigarette Products