Thursday, June 25, 2009

Nuclear Radiation

The release of radiation is a phenomenon unique to nuclear explosions. There are several kinds of radiation emitted; these types include gamma, neutron, and ionizing radiation, and are emitted not only at the time of detonation (initial radiation) but also for long periods of time afterward (residual radiation).

Initial Nuclear Radiation

Initial nuclear radiation is defined as the radiation that arrives during the first minute after an explosion, and is mostly gamma radiation and neutron radiation.
The level of initial nuclear radiation decreases rapidly with distance from the fireball to where less than one roentgen may be received five miles from ground zero. In addition, initial radiation lasts only as long as nuclear fission occurs in the fireball. Initial nuclear radiation represents about 3 percent of the total energy in a nuclear explosion.
Though people close to ground zero may receive lethal doses of radiation, they are concurrently being killed by the blast wave and thermal pulse. In typical nuclear weapons, only a relatively small proportion of deaths and injuries result from initial radiation.

Residual Nuclear Radiation

The residual radiation from a nuclear explosion is mostly from the radioactive fallout. This radiation comes from the weapon debris, fission products, and, in the case of a ground burst, radiated soil.
There are over 300 different fission products that may result from a fission reaction. Many of these are radioactive with widely differing half-lives. Some are very short, i.e., fractions of a second, while a few are long enough that the materials can be a hazard for months or years. Their principal mode of decay is by the emission of beta particles and gamma radiation.

Radiation Effects on Humans

Certain body parts are more specifically affected by exposure to different types of radiation sources. Several factors are involved in determining the potential health effects of exposure to radiation. These include:

1) The size of the dose (amount of energy deposited in the body)
2) The ability of the radiation to harm human tissue
3) Which organs are affected

The most important factor is the amount of the dose - the amount of energy actually deposited in your body. The more energy absorbed by cells, the greater the biological damage. Health physicists refer to the amount of energy absorbed by the body as the radiation dose. The absorbed dose, the amount of energy absorbed per gram of body tissue, is usually measured in units called rads. Another unit of radation is the rem, or roentgen equivalent in man. To convert rads to rems, the number of rads is multiplied by a number that reflects the potential for damage caused by a type of radiation. For beta, gamma and X-ray radiation, this number is generally one. For some neutrons, protons, or alpha particles, the number is twenty.

Hair

The losing of hair quickly and in clumps occurs with radiation exposure at 200 rems or higher.

Brain

Since brain cells do not reproduce, they won't be damaged directly unless the exposure is 5,000 rems or greater. Like the heart, radiation kills nerve cells and small blood vessels, and can cause seizures and immediate death.

Thyroid

The certain body parts are more specifically affected by exposure to different types of radiation sources. The thyroid gland is susceptible to radioactive iodine. In sufficient amounts, radioactive iodine can destroy all or part of the thyroid. By taking potassium iodide can reduce the effects of exposure.

Blood System

When a person is exposed to around 100 rems, the blood's lymphocyte cell count will be reduced, leaving the victim more susceptible to infection. This is often refered to as mild radiation sickness. Early symptoms of radiation sickness mimic those of flu and may go unnoticed unless a blood count is done.According to data from Hiroshima and Nagaski, show that symptoms may persist for up to 10 years and may also have an increased long-term risk for leukemia and lymphoma. For more information, visit Radiation Effects Research Foundation.

Heart

Intense exposure to radioactive material at 1,000 to 5,000 rems would do immediate damage to small blood vessels and probably cause heart failure and death directly.

Gastrointestinal Tract

Radiation damage to the intestinal tract lining will cause nausea, bloody vomiting and diarrhea. This is occurs when the victim's exposure is 200 rems or more. The radiation will begin to destroy the cells in the body that divide rapidly. These including blood, GI tract, reproductive and hair cells, and harms their DNA and RNA of surviving cells.

Reproductive Tract

Because reproductive tract cells divide rapidly, these areas of the body can be damaged at rem levels as low as 200. Long-term, some radiation sickness victims will become sterile.

Dose-rem Effects
5-20 Possible late effects; possible chromosomal damage.

20-100 Temporary reduction in white blood cells.

100-200 Mild radiation sickness within a few hours: vomiting,
diarrhea, fatigue; reduction in resistance to infection.

200-300 Serious radiation sickness effects as in 100-200 rem and
hemorrhage; exposure is a Lethal Dose to 10-35% of the
population after 30 days (LD 10-35/30).

300-400 Serious radiation sickness; also marrow and intestine
destruction; LD 50-70/30.

400-1000 Acute illness, early death; LD 60-95/30.

1000-5000 Acute illness, early death in days; LD 100/10.

 
Google SEO sponsored by Red Dragon Electric Cigarette Products