Thursday, December 17, 2009

Geber

Geber is the Latinized form of "Jabir", with the full name of Abu Musa Jābir ibn Hayyān al azdi (Arabic: جابر بن حيان) (born c. 721 in Tus–died c. 815 in Kufa), a prominent polymath: a chemist and alchemist, astronomer and astrologer, engineer, geologist, philosopher, physicist, and pharmacist and physician. He is considered by many to be the "father of chemistry." His ethnic background is not clear; although some sources state that he was an Arab, other sources introduce him as Persian. Geber or Jabir is held to be the first practical alchemist. As early as the tenth century, the identity of Geber appears to have been disputed. Some scholars and historians have maintained that Jabir is the pen name of a group of Ismaili writers in the ninth and tenth centuries, and that he died—if indeed he ever lived—a century before the writings attributed to him were composed.

Contributions
Chemistry
Jabir is mostly renowned for his contributions to chemistry. He emphasised systematic experimentation, and did much to free alchemy from superstition and turn it into a science.
He is credited with the invention of over twenty types of now-basic chemical laboratory equipment, such as the alembic and retort, and with the discovery and description of many now-commonplace chemical substances and processes – such as the hydrochloric and nitric acids, distillation, and crystallisation – that have become the foundation of today's chemistry and chemical engineering.
He also paved the way for most of the later Islamic alchemists, including al-Kindi, al-Razi and al-Iraqi, who lived in the 9th-13th centuries. His books strongly influenced the medieval European alchemists and justified their search for the philosopher's stone.
He clearly recognized and proclaimed the importance of experimentation. "The first essential in chemistry", he declared, "is that you should perform practical work and conduct experiments, for he who performs not practical work nor makes experiments will never attain the least degree of mastery."
Jabir is also credited with the invention and development of a number of chemical substances and instruments that are still used today. He discovered sulfuric acid, and by distilling it together with various salts, Jabir discovered hydrochloric acid (from salt) and nitric acid (from saltpeter). By combining the two, he invented aqua regia, one of the few substances that can dissolve gold. Besides its obvious applications to gold extraction and purification, this discovery would fuel the dreams and despair of alchemists for the next thousand years. He is also credited with the discovery of citric acid (the sour component of lemons and other unripe fruits), acetic acid (from vinegar), and tartaric acid (from wine-making residues). Jabir also discovered and isolated several chemical elements, such as arsenic, antimony and bismuth.
He was also the first to classify sulfur (‘the stone which burns’ that characterized the principle of combustibility) and mercury (which contained the idealized principle of metallic properties) as 'elements'. He was also the first to purify and isolate sulfur and mercury as pure elements.
Jabir applied his chemical knowledge to the improvement of many manufacturing processes, such as making steel and other metals, preventing rust, engraving gold, dyeing and waterproofing cloth, tanning leather, and the chemical analysis of pigments and other substances. He developed the use of manganese dioxide in glassmaking, to counteract the green tinge produced by iron — a process that is still used today. He noted that boiling wine released a flammable vapor, thus paving the way for the discovery of ethanol (alcohol) by Al-Kindi and Al-Razi. According to Ismail al-Faruqi and Lois Lamya al-Faruqi, "In response to Jafar al-Sadik's wishes, [Jabir ibn Hayyan] invented a kind of paper that resisted fire, and an ink that could be read at night. He invented an additive which, when applied to an iron surface, inhibited rust and when applied to a textile, would make it water repellent."
The seeds of the modern classification of elements into metals and non-metals could be seen in his chemical nomenclature. He proposed three categories:

1. "Spirits" which vaporise on heating, like arsenic (realgar, orpiment), camphor, mercury, sulfur, sal ammoniac, and ammonium chloride.
2. "Metals", like gold, silver, lead, tin, copper, iron, and khar-sini;
3. Non-malleable substances, that can be converted into powders, such as stones.
The origins of the idea of chemical equivalents can also be traced back to Jabir, who was the first to recognize that "a certain quantity of acid is necessary in order to neutralize a given amount of base." According to Jabir, the metals differ because of "different proportions of sulfur and mercury in them."
In the Middle Ages, Jabir's treatises on alchemy were translated into Latin and became standard texts for European alchemists. These include the Kitab al-Kimya (titled Book of the Composition of Alchemy in Europe), translated by Robert of Chester (1144); and the Kitab al-Sab'een by Gerard of Cremona (before 1187). Marcelin Berthelot translated some of his books under the fanciful titles Book of the Kingdom, Book of the Balances, and Book of Eastern Mercury. Several technical Arabic terms introduced by Jabir, such as alkali, have found their way into various European languages and have become part of scientific vocabulary.

Legacy
Max Meyerhoff states the following on Jabir ibn Hayyan: "His influence may be traced throughout the whole historic course of European alchemy and chemistry."
The historian of chemistry Erick John Holmyard gives credit to Geber for developing alchemy into an experimental science and he writes that Geber's importance to the history of chemistry is equal to that of Robert Boyle and Antoine Lavoisier.
The historian Paul Kraus, who had studied most of Geber's extant works in Arabic and Latin, summarized the importance of Geber to the history of chemistry by comparing his experimental and systematic works in chemistry with that of the allegorical and unintelligible works of the ancient Greek alchemists.
The word gibberish is theorized to be derived from Geber's name, in reference to the incomprehensible technical jargon often used by alchemists, the most famous of whom was Geber. Other sources such as the Oxford English Dictionary suggest the term stems from gibber; however, the first known recorded use of the term "gibberish" was before the first known recorded use of the word "gibber".
 
Google SEO sponsored by Red Dragon Electric Cigarette Products