Sunday, February 14, 2010

Abu Rayhan Biruni

Abū Rayhān Muhammad ibn Ahmad Bīrūnī (Persian: ابوریحان محمد بن احمد بیرونی), often known as Alberuni, Al Beruni or variants, (born 5 September 973 in Kath, Khwarezm (now in Uzbekistan), died 13 December 1048 in Ghazni, today's Afghanistan) was a Persian scholar and polymath of the 11th century.
He was a scientist and physicist, an anthropologist and comparative sociologist, an astronomer and chemist, a critic of alchemy and astrology, an encyclopedist and historian, a geographer and traveler, a geodesist and geologist, a mathematician, a pharmacist and psychologist, an Islamic philosopher and theologian, and an scholar and teacher.
He was the first Muslim scholar to study India and the Brahminical tradition, and has been described as the founder of Indology, the father of geodesy, and "the first anthropologist". He was also one of the earliest leading exponents of the experimental scientific method, and was responsible for introducing the experimental method into mechanics and mineralogy, a pioneer of comparative sociology and experimental psychology, and the first to conduct elaborate experiments related to astronomical phenomena.
George Sarton, the father of the history of science, described Biruni as "one of the very greatest scientists of Islam, and, all considered, one of the greatest of all times." A. I. Sabra described Biruni as "one of the great scientific minds in all history."
The crater Al-Biruni on the Moon is named after him. Tashkent Technical University (formerly Tashkent Polytechnic Institute) is also named after Abu Rayhan al-Biruni and a university founded by Ahmad Shah Massoud in Kapisa is named after him.

Astronomy
Will Durant wrote the following on al-Biruni's contributions to Islamic astronomy:
"He wrote treatises on the astrolabe, the planisphere, the armillary sphere; and formulated astronomical tables for Sultan Masud. He took it for granted that the earth is round, noted “the attraction of all things towards the center of the earth,” and remarked that astronomic data can be explained as well by supposing that the earth turns daily on its axis and annually around the sun, as by the reverse hypothesis."

Experimental observations
Biruni was the first to conduct elaborate experiments related to astronomical phenomena.
He supposed the Milky Way galaxy to be a collection of numerous nebulous stars, and in Khorasan, he observed and described the solar eclipse on 8 April 1019, and the lunar eclipse on 17 September 1019, in detail, and gave the exact latitudes of the stars during the lunar eclipse.
In 1031, Biruni completed his extensive astronomical encyclopaedia Kitab al-Qanun al-Mas'udi (Latinized as Canon Mas’udicus), in which he recorded his astronomical findings and formulated astronomical tables. The book introduces the mathematical technique of analysing the acceleration of the planets, and first states that the motions of the solar apogee and the precession are not identical. Biruni also discovered that the distance between the Earth and the Sun is larger than Ptolemy's estimate, on the basis that Ptolemy disregarded the annual solar eclipses.

Philosophy of science
Scientific method
In early Islamic philosophy, Biruni discussed the philosophy of science and introduced an early scientific method in nearly every field of inquiry he studied. For example, in his treatise on mineralogy, Kitab al-Jawahir (Book of Precious Stones), he is "the most exact of experimental scientists", while in the introduction to his study of India, he declares that "to execute our project, it has not been possible to follow the geometric method" and develops comparative sociology as a scientific method in the field. He was also responsible for introducing the experimental method into mechanics, the first to conduct elaborate experiments related to astronomical phenomena, and a pioneer of experimental psychology.
Unlike his contemporary Avicenna's scientific method where "general and universal questions came first and led to experimental work", Biruni developed scientific methods where "universals came out of practical, experimental work" and "theories are formulated after discoveries." In his debate with Avicenna, Biruni made the first real distinction between a scientist and a philosopher, referring to Avicenna as a philosopher and considering himself to be a mathematical scientist.
Biruni's scientific method was similar to the modern scientific method in many ways, particularly his emphasis on repeated experimentation. Biruni was concerned with how to conceptualize and prevent both systematic errors and random errors, such as "errors caused by the use of small instruments and errors made by human observers." He argued that if instruments produce random errors because of their imperfections or idiosyncratic qualities, then multiple observations must be taken, analyzed qualitatively, and on this basis, arrive at a "common-sense single value for the constant sought", whether an arithmetic mean or a "reliable estimate."
 
Google SEO sponsored by Red Dragon Electric Cigarette Products