Monday, July 12, 2010

Ice

Ice, technically, is one of the 15 known crystalline phases of water. In non-scientific contexts, the term usually means ice Ih, which is known to be the most abundant of these solid phases. It can appear transparent or opaque bluish-white colour, depending on the presence of impurities or air inclusions. The addition of other materials such as soil may further alter the appearance.
The most common phase transition to ice Ih occurs when liquid water is cooled below 0°C (273.15K, 32°F) at standard atmospheric pressure. It can also deposit from vapour with no intervening liquid phase, such as in the formation of frost.
Ice appears in nature in forms of precipitation as varied as snowflakes, hail, icicles, glaciers, pack ice, and entire polar ice caps. It is an important component of the global climate, and plays an important role in the water cycle. Furthermore, ice has numerous cultural applications, from ice cooling of drinks to winter sports and the art of ice sculpting.
The word is derived from Old English ís, which in turn stems from Proto-Germanic *isaz.

Formation
Ice that is found at sea may be in the form of sea ice, pack ice, or icebergs. The term that collectively describes all of the parts of the Earth's surface where water is in frozen form is the cryosphere. Ice is an important component of the global climate, particularly in regard to the water cycle. Glaciers and snowpacks are an important storage mechanism for fresh water; over time, they may sublimate or melt. Snowmelt is often an important source of seasonal fresh water.
Rime is a type of ice formed on cold objects when drops of water crystallize on them. This can be observed in foggy weather, when the temperature drops during the night. Soft rime contains a high proportion of trapped air, making it appear white rather than transparent, and giving it a density about one quarter of that of pure ice. Hard rime is comparatively denser.
Aufeis is layered ice that forms in Arctic and subarctic stream valleys. Ice, frozen in the stream bed, blocks normal groundwater discharge, and causes the local water table to rise, resulting in water discharge on top of the frozen layer. This water then freezes, causing the water table to rise further and repeat the cycle. The result is a stratified ice deposit, often several meters thick. Ice can also form icicles, similar to stalactites in appearance, or stalagmite-like forms as water drips and re-freezes.
Clathrate hydrates are forms of ice that contain gas molecules trapped within its crystal lattice. Pancake ice is a formation of ice generally created in areas with less calm conditions.
Candle Ice is a form of Rotten Ice that develops in columns perpendicular to the surface of a lake.
Ice discs are circular formations of ice surrounded by water in a river.

Ice and transportation
Ice can also be an obstacle; for harbours near the poles, being ice-free is an important advantage; ideally, all year long. Examples are Murmansk (Russia), Petsamo (Russia, formerly Finland) and Vardø (Norway). Harbours which aren't ice-free are opened up using icebreakers.
Ice forming on roads is a dangerous winter hazard. Black ice is very difficult to see, because it lacks the expected frosty surface. Whenever there is freezing rain or snow which occurs at a temperature near the melting point, it is common for ice to build up on the windows of vehicles. Driving safely requires the removal of the ice build-up. Ice scrapers are tools designed to break the ice free and clear the windows, though removing the ice can be a long and laborious process.
Far enough below the freezing point, a thin layer of ice crystals can form on the inside surface of windows. This usually happens when a vehicle has been left alone after being driven for a while, but can happen while driving, if the outside temperature is low enough. Moisture from the driver's breath is the source of water for the crystals. It is troublesome to remove this form of ice, so people often open their windows slightly when the vehicle is parked in order to let the moisture dissipate, and it is now common for cars to have rear-window defrosters to solve the problem. A similar problem can happen in homes, which is one reason why many colder regions require double-pane windows for insulation.
When the outdoor temperature stays below freezing for extended periods, very thick layers of ice can form on lakes and other bodies of water, although places with flowing water require much colder temperatures. The ice can become thick enough to drive onto with automobiles and trucks. Doing this safely requires a thickness of at least 30 centimetres (one foot).
For ships, ice presents two distinct hazards. Spray and freezing rain can produce an ice build-up on the superstructure of a vessel sufficient to make it unstable, and to require it to be hacked off or melted with steam hoses. And icebergs — large masses of ice floating in water (typically created when glaciers reach the sea) — can be dangerous if struck by a ship when underway. Icebergs have been responsible for the sinking of many ships, the most famous probably being the Titanic.
For aircraft, ice can cause a number of dangers. As an aircraft climbs, it passes through air layers of different temperature and humidity, some of which may be conducive to ice formation. If ice forms on the wings or control surfaces, this may adversely affect the flying qualities of the aircraft. During the first non-stop flight of the Atlantic, the British aviators Captain John Alcock and Lieutenant Arthur Whitten Brown encountered such icing conditions - Brown left the cockpit and climbed onto the wing several times to remove ice which was covering the engine air intakes of the Vickers Vimy aircraft they were flying.
A particular icing vulnerability associated with reciprocating internal combustion engines is the carburetor. As air is sucked through the carburettor into the engine, the local air pressure is lowered, which causes adiabatic cooling. So, in humid near-freezing conditions, the carburettor will be colder, and tend to ice up. This will block the supply of air to the engine, and cause it to fail. For this reason, aircraft reciprocating engines with carburettors are provided with carburettor air intake heaters. The increasing use of fuel injection—which does not require carburettors—has made "carb icing" less of an issue for reciprocating engines.
Jet engines do not experience carb icing, but recent evidence indicates that they can be slowed, stopped, or damaged by internal icing in certain types of atmospheric conditions much more easily than previously believed. In most cases, the engines can be quickly restarted and flights are not endangered, but research continues to determine the exact conditions which produce this type of icing, and find the best methods to prevent, or reverse it, in flight.
 
Google SEO sponsored by Red Dragon Electric Cigarette Products